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A HYDRODYNAMIC APPROACH TQ THE BEHAVIOR OF AN
ANTENNA IN A WARM PLASMA®
by
R. R. Hodges, Jr.
Southwest Center for Advanced Studies
Dallas, Texas

ABSTRACT

The behavior of an antenna in a warm plasma is determined through
the solution of thé linearized hydrodynamic equations énd Maxwell's
equations, using'an approximate ion sheath boundary condition. The
latter consists in the represention of the suppert of the sheath by
a static electric double layer of finite potential, resulting in a
model which has an abrupt discontinuity in electron concentration
at the sheath edge. This approximation represents the static character-
istics of an actual sheath, and is a reasonable approximation for r.f.
fields with wavelengths much éreater than the actual thickness of the
sheath edge. As such‘wavelengths are also necessary to the neglect of
Landau damping the ranges of validity of the hydrodynamic approach and
of the present sheath model are identical. The presence of a time
varying (r.f.) electron condensation at the sheath boundary is shown to
modify the electron direct current through the sheath, and to introduce
a time varying component of this current as well. This leads to theoreti-
cal representatiéns of antenna impedance and of the direct current col-

lected by an antenna which are similar to those observed by experimenters.

*This research was supported by the National Aeronautics and Space

Administration under grant NsG-269-62.



1. Introduction

It has been consistently observed, in both ionospheric and laboratory

experiments, that predictions of the behavior of antennas in plasmas,
based on cold plasma theory, are inadequate to explain various details
of the measurements, particularly in those of the real part of either
the admittance or impedance of an antenna, and as well of the direct
current collected by an antenna. Improvements in the theory naturally
result when the finite temperature of the electrons of the plasma is
taken into accounf. Ideally this should be implemented through the
simultaneous solution of Boltzmann's and Maxwell's equations. However,
the mathematical difficulties of this approach are considerable unless
approximations are made, one of which is the use of the linearized
hydrodynamic equations to represent the implications of Boltzmann's
equation [cf. Gould, 1959; Oster, 1960; Cohen, 1961, 1962a, 13962b;
Wait, 1964; Fejer, 1964, and Balmain, 1965, 1966].

The purpose of the present\paper is to show further application
of the hydrodynamic appfoach in the determination of the behavior of
an antenna in a warm plasma. Essential to this is an approximation that
the sheath which surrounds an antenna in a plasma may be treated as if
it were a sharply defined discontinuity in the electron concentration, as
if supported by a static electric double layer of finite potential.
Fejer [1964] has employed a similar condition embodied in an assumption

of a reflecting boundary, which implies an infinite potential barrier.



Justification for the assumption of discontinuous electron con-
centration as representative of a sheath may be found in the work of
Pavkovich [196y47, in which it is shown that most of the change in electron
concentration may take place in about one Debye length. This of course
places a lower limit on wavelengths for which the present theory is
applicable; however, it is also the limit imposed on the hydrodynamic
theory by the neglect of Landau damping.

An important implication of the assumed finite potential barrier
approximation is that it permits a finite electron current flow to the
antenna. The presence of an oscillating (r.f.) field produces an
oscillating electron condensation at the sheath boundary. As the
current through the sheath depends on the discontinuity in the electron
pressure at the barrier, the oécillating part of the electron pressure
necessarily produces a time varying component of‘the electron current
through the barrier. This is not unlike the actual situation at a
sheath, and it is shown in the following analysis that the assumed boundary
condition leads to results which compare favorably with measurements

which have been reported in the literature.



2. The Field Equations

Waves in a warm plasma may be characterized by a field ¢, which

is the collum matrix

(1)

b m

where E is the electric field intensity (a vector), H is the magnetié
field intensity (a vector), v is the mean electron velocity in the
plasma (a vector) and p is the electron pressure perturbation (a scilar).
The field ¢ is produced by a source distribution, denoted ¥, which, in

notation similar to that of Cohen (1962a), is assigned the form

v=| o (2)

-Q

where J and K are the conventional electric and magnetic current den-
sities, F is a mechanical force density, and Q is the rate of electron

creation (or emission) by the source. The relationship between the field

® and source ¥ is
¥ = M® (3)

where the operator M is a statement of Maxwell's equations and, in this



analysis, the linearized hydrodynamic equations for momentum and

continuity. If the time dependence of the field and source quantities

is assumed to be et then M is given by the tensor
Goe
-iwe Va —— 0
o m
-V —imuo 0 0
i 0 -lws M v )
m
0 0 -V ~1wk

where the usual Lorentz gas approximations have been made, and where

the notational definitions are

magnitude of charge to mass ratio for an electron

g0

e permittivity of free space
u_ permeability of free space
§  electron mass density (m times the electron concentration)
kK inverse elasticity for electrons
2( momentum distribution tensor
(Portions of this notation were suggested to the author by G. A.
Deschamps.) The momentum distribution tensor Z(’may be exbressed

in general as
- __p -1 (5)

where ¥ is the dielectric susceptibility of a cold plasma as gilven by

the Appleton-Hartree approximation, and wp is the plasma frequency
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For an isotropic plasma (i.e., no static magnetic field)z{ becomes the

scalar Uy defined by

Y = U= 1-1iv/y (7

where y is the electron collision frequency for momentum transfer.
The significance of the use of the above notational convention is
that Egs Hys 8o and Kk, may be regarded as intrinsic properties of the

medium. These quantities are related by

N 2
EoMo ~ /e
(8)
_ 2
Sk, = L/a
where c is the velocity of light in vacuum and a is the so-called
sonic velocity for an electron gas, which is defined by
vk T
a2 - B (9)
m

where y is the ratio of specific heats, k_, i1s Boltzmann's constant, and

B
T is the elecfron temperature. It should be further noted that just as

gOE and “oH have significance in electromagnetic theory as displacement
density and magnetic induction respectively, the quantity éov is identifiable
as the density of’électron momentum, and Kop as the electron condensation

(i.e., the ratio of the perturbation of electron concentration to its

time average).



For the degenerate case of no static magnetic field, it is possible

to separate ¢ into a transverse field ¢, and a longitudinal field ¢

T L?
which are respectively
ET E
oy =|H ) o = v, (10)
Vi p

Similarly ¥ separates into a source WT which contributes only to

transverse fields, and ¥_ which contributes only to longitudinal fields,

L

o I
= = - 1
Yo , WL Fp (11)
“Fo -Q

A discussion of the separation of J into transverse and longitudinal
parts has been given by Balmain [1963]; the separation of F fellows a
similar argument. A useful continuity equation for the source is
N (Soe .
Vg = 9rg o= -dep + ——Q (12)
where p is the source charge density; this implies that p is a derived

quantity. The field equations may be expressed

e
]

=

©

(13)

where
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Thus, it may be noted that the transverse field equation is exactly that
for a cold isotropic plasma. The nature of the longitudinal field equa-

tion may be more fully understood if EL and v, are identified as

EL = =V
(15)
vy T -Vn

where £ and n are scalar potential functions. In addition, an operator,

DL’ which gives a diagonal form to DLMLQ)L is
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o
Goe
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where X, is the isctropic cold plasma susceptibility (xo = ~wp /w"U),

and kp is the plasma wave number given by

' K
} Fo - D .
kp = (A)p (SOKO = —ﬁ (4.7)

where kD is the Debye wave number. Operation on both sides of the

longitudinal field equation with DL results in

v? 0 0 3
D ¥ = w2 - a?) |o v2ooo B (18)
0 0 1 D
where
I 4 s (19)
p | X

It is evident from the form of equation (18) that the scalar fields &



n and p may propagate in a source free region with complex wave number
-io; this represents the electroacoustic field. In addition & and n
may each satisfy Poisson's equation, which give the electrostatic electric
and velocity fields. Due to the form of DLWL it can be further ascer-
tained that the electrostatic fields aré those which would exist in a
cold plasma.

In electromagnetic theory a useful concept is that of reaction

[cf. Rumsey, 195471, To extend this to the present case it is helpful to

~
introduce the field &, which is defined as

E
~-H
~
o = (20)
-V
p
Then for two sources WA and WB’ the Lorentz relation is
~ T ~T N -4 T ~ T
e, Moy - o Mo =0 Y, - 0 ¥, (21)

For the special case of no magnetic field the left-hand side of this

equation may be manipulated into the form

v (EBAH - E,.H, + v

A A™'B APB )

- V.

BPA

Upon integration. of both sides of equation (21) over a sufficiently

large volume, with the assumption of some loss, the left-hand side wvanishes,
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and the resulting reciprocity, or reaction, relation is

o .
r 3Ty = <aB>=|as Ty (22)
A B ‘A 5 A B

where each integration is over the support of the appropriate source.
Rumsey [19547] has designated the quantity <AB> the reaction of the
sources A and B. Its physical significance is that with field and source
terms defined for unit current input to the terminals of each source,
-<AB> is the mutual impedance, while for unit voltage input it is the
mutual admittance, In the limiting case where WA and WB are the same
source, the self reaction leads to the input impedance or admittancs.

These observations are identical to those in network theory based on

the reciprocity theorem.



3. An Approximate Sheath Boundary Condition

The sheath which surrounds a conducting body in a plasma may be
characterized, insofar as the Lorentz gas assumptions are concerned,
as a region in which the electron concentration is much less than the
ambient concentration in the plasma. The sheath boundary is not abrupt,
but the major portion of the change in concentration may take place in
about one Debye length [cf. Pavkovich, 1964].> Thus for fields with wave-
lengths much greater than a Debye length, it is permissible to approximate
a sheath as an abrupt discontinuity in electron concentration. Fields
which propagate with wavelengths nearly equal to the Debye length in the hydro-
dynamic theory are physically unrealizable, due to Landau damping. Thus
the ranges of applicability of the present sheath approximation and of the
hydrodynamic theory are the same.

The existence of a sheath about a body in a plasma is a natural
thing which occurs due to the thermal motion of electrons and ions, which
results in a static negative‘charge on the body and a surrounding region
of excess positive ioné. However, a conjecture of an abrupt discontinuity
in electron concentration at the sheath edge has the physical implication
that an electric double layer exists as a barrier. For such a model to
have physical significance it is necessary that the surface charge on the
inner shell of the assumed electric double layer be equal to that on the
body in the actual case, and that on the outer shell be equal to the
total excess poéifive ion charge in the sheath. For equilibrium conditions
it is evident that the inner and outer charges are equal in magnitude

but of opposite sign.



- 12 -

To elucidate the similarity of the present barrier approkimation
to an actual sheath consider a one-dimensional situation of a plane
conductor in a plasma. The actual conductor is presumed to have static
surface charge ¢ per unit area (a negative qpantity), the condensation
of positive charge in the sheath is S+, and the ambient positive ion con-
centration in the plasma outside the sheath is assumed to equal that of

the electrons, So/m. Thus the distribution of charge in the actual sheath

’

is
Goe
o6(x) + — S (x)
m +
where &(x) is the Dirac delta function, and the x direction is teken
to be normal to the conductor surface. The static electric field, E

)6k

for x > 0 is

~ 1
E (%) = x — o+ — dz 8 (z)] (23)
where x is a unit vector in thé x direction and ¢ is a dummy variable.

From this, the electric potential of the conductor may be found to be

feq]

= . = e 1e
v, (0) xj ax B (x) : (21)
e} o
Hence an electron which enters the sheath from the plasma and reaches the
conductor looses kinetic energy -~ oe/eo. For the electric double layer

barrier approximétion, the static charge distribution model is
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o8'(x-x ).
O

where 6'(x—xo) is the derivative of the Dirac delta function, and X
is the coordinate of the barrier. The static electric field for this

case is

~

= 2 _
EDC = %7 §(x xo) (25)

e}

and the electric potential gs a function of x is

.. " -0 - o(xe :
Vpe = Ix EDc(c)dz; = . o(x) - o(x xo)] (26)

where © is the Heaviside function (or unit step function), i.e.

X

o(x-x% ) =‘( dxd(x~-x ) (27)
e - o

Therefore the kinetic energy lost by an electron in traversing the ap-
proximate sheath boundary, -ce/eo, is identical to that lost by an

electron in traversing the actual sheath. In either case electrons not

possessing the required initial energy are reflected, and in either case

the effect of electron molecule collisions within the sheath is to

increase the apparent barrier potential. In the ionosphere it is not

uncommon for the electron mean free path length to greatly exceed the Debye

length, and thus the neglect of collisions within the sheath should not

yield misleading conclusions.
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Electrons which traverse the sheath and reach the conducting plane
must have initial speeds in the -x direction which exceed V—20e/€om.

Thus the electron current density through the sheath is

\ / 20e

\ a2 o ‘f'_ B e m
¥ = d d 2
Yo Xej-—oo sz_w Yy . dv, £(wv) v (28)

where £(v) is the electron velocity distribution function outside the
sheath, and again collisions within the sheath are neglected. Assuming

f(v) to be Maxwellian, ;o becomes

) Aéoe kBT exp oe (29)
o = Ay € k T
o m 27m o B

It should be noted that this result is applicable for negative values
of o. The mathematical ramification of positive ¢ is that the exponen-
tial term must be replaced by unityj; and the resulting béundary condition
is that characterized as absorptive by Balmain [1966].

The presence of a time varying longitudinal field in the plasma
may cause fluctuation of the electron condensation at the sbeath boundary.
Because expression (29) depends both on electron concentration and
temperature, it is evident that if these quantities were to fluctuate at
the sheath boundary a similar fluctuation would be impressed uponrg;.
Thus the current density through the sheath at frequency w may be ap-

proximated for small condensations by
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lw) = -as(w,x ) == (30)
] o’ ds

where As(m,xo) is the discontinuous change in the time-varying electron
condensation across the sheath barrier. Performing the differentiation

for adiabatic conditions gives
} ~
#(w) = ~x8s(w,x )T (31)
7

where I' is the current density coefficient

P= L+ (D) G- —E01% 3 (32)
. o B .
If it is assumed that there is no time-varying concentration of surface
charge on the sheath barrier (at x = xo), then the density of current
through the sheath is also given by

§ e § !

1 _ o _ oe
{r-(w) =T = V(XO+AX)‘ -

v'(x -Ax) (33)
o

where the prime denotes quantities within the sheath, and Ax is an arbitrarily
small positive displacément. The equivalence of equations (31) and (33)
is the essence of the electron current boundary condition for the abruptly

discontinuous electron concentration model of the sheath.



4. Application to Antenna Impedance Problem

To further elucidate the utility of the present hydrodynamic ap-
proach, it will be useful to apply it to the study of the electrical
behavior of an antenna in a warm isotropic plasma. For this purpose a
relatively simple geometry, similar to the Hertzian dipole, will be
employed. A sketch of the assumed antenna is shown in Figure 1. It
consists of two spheéeres, each of radius R, which are separated by the
distance L, where the dimensions are assumed to satisfy the condition

1 -

o >>L >> R, l/kp (34)

o

and where k_ is the free space electromagnetic wave number (=w/c), and
kp is the plasma wave number (=wp/a). Connecting the spheres is a cy-
lindrical conductor, on the surface of which is essentially a divergence-
less surface current, equal in total to Ig’ the generator current. At
the surface of each sphere the current density is presumed to have a
divergence, leading tolan approximately uniform oscillating surface charge

on each sphere. Thus for the assumed geometry J_ exists as a uniform

T

line current between the spheres while J. has divergence only at the

L

surfaces of the spheres.

The transverse field, ¢, is a solution to the equation ¥, = M_9

T T T

as was indicated in equation (13). In the present case Y, consists only

T
of the current Jf, and thus the transverse field is approximately that

radiated by a Hertzian dipole of moment ng in a cold plasma of suscepti-

bility X Deschamps [1962] has shown that the impedance of an antenna in
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a conducting medium having complex dielectric constant is related to

its free space impedance by

Zlw,e ) =

S

Z(nw,so) (35)

. . . . \ : 2.
where n is the refractive index of the conducting medium (i.e., € = n"e ).

[}
/

In free space the current element of a Hertzian dipole contributes, to

a first order approximation, only to the radiated fields, while the in-
duction and electrostatic fields are due to the divergence of the current

at either end of the dipole [cf. Jordan, 19501, Thus the contribution of
JT to the dipole impedance in free space is the radiation resistance

(¥20 k02L2). Applying relation (35) to the plasma case gives the transverse

field contribution to the antenna impedance to be
Z, =20k "L ¢1+XO (36)

The effect of a sheath about JT is negligible in this approximation, just
as the radius of the conductor is unimportant.

To explain the effects of the electrostatic and electroacoustic
(i.e., longitudinal) fields on antenna behavior, it will be helpful to
first examine the fields of a single sphere with oscillating surface
charge, and later to compute the mutual effect of two such spheres on antenna
impedance.

The general form of solution to equation (18) in a source free

region in spherical coordinates is
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£ Al + A2 e-uP

1 -
n| % By + B, e %" (37
p C e~ur

where r is the radial coordinate, o is defined in equation (19), and Al’
A2, Bl’ BQ, and C are constants. Applying the definitions of £ and n

as given by equations (15) gives the general form of ¢_ to be

L
EL 5 [Al + A2(ar+l)e 1
r
- T —ar
o \ = r2 [Bl + BQ(ur+l)e ] (38)
C -or
P T e

where ? is a unit vector in the radial coordinate direction. Assuming

that if PL and Q exist, these act only as surface sources, the form of

o is unchanged in a region where the source current JL has zero diver-

gence, because of the form of DLWL;Cf. equation (18). The proper form

of JL which has divergence, and hence charge accumulation, only on the

spherical conductor is, from equation (12),

. g e (x-R) (39)
J.o= -p —&_
L )

Yp

where © is the unit step (or Heaviside ) function defined previously

in equation (27). While this is not a physically realistic current

distribution it satisfies the condition that VAJL = 0, and in addition
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has the necessary form for uniform charge distribution on the sphere.
Substitution of expressions (38) and (39) into the longitudinal field
equation wL = MLQL gives the relationships

I

g

1
1 iwe Y4m 1ty
o o

ol
it

)

mIg
Bl - urs e
(140)
s e X
0 m e}
A= = B = c
2 lwsom 2 Goe 1+XO .

Thus the only unknown quantity is the constant A_, which must be

23
obtained by application of a boundary condition.

In the following, quantities related to the sheath are designated by
the addition of a prime: the sheath radius is R', the susceptibility within
the sheath xo', ete. It is assumed that the plasma frequency within the
sheath is small as compared with the applied frequency, so that the

electroacoustic field within the sheath region may be neglected. Thus

with the aid of equations (40), @L may be expressed in the form
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rI 1
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iweounr l+XO'
e, =1 . L[o(r-R) - 0(r-R")]
rmI x '
- g S
7 2
§ elqr Ity !
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r [1 1 ur .
— g + A (gr+l)e (41)
2 1. 2
r iwe M I+y
O (O}
P m I Xo iweom —op
+ 5 |- & + A2(@r+l)e O(r-R'")
r § elm {1+% $ e
o o) o)
Goe l+xo R e_ar
- 2
rm X

where the unknowns xo' and A2 must be evaluated by satisfying the boundary
condition at r = R' that electron momentum is conserved. As given by
equation (33), this may be expreésed in terms of the coefficients of
equation (41) as

I % I X ive A

A —aR!
rey(u) = & = —Es — - —3 2 (ar'+1)e R (42)
' LgR? l+Xo' HaR'T | 1x R' '

Identifying -As as Kop(R'), equation (31) is equivalent to

1
=
o
—

() = 22 [—2]a e (43)

H >
“ .
e

By equating expressions (42) and (43), the relations
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Ig aR XO 1
A2 ) i 4 1+ | KosoeR' X ()
we Xo oR"™1+ = 2\r
i1we m X
o o)
and
. -1
1weom KOG eR' [l+x
x.'=-J1+—"——JoR'" + 1 + 2 2ir (45)
0
Kk 6 eR'T iwe m X
o O @] (]

are obtained. These may be substituted into equation (41) to complete

the formulation of ¢ for an isolated sphere.

L

To determine the impedance of the assumed antenna it is necessary
to consider the contributions of both the transverse and longitudinzl
fields. Examination of the configuration, shown in Figure 1, will in-

dicate that the impedance due to these fields are in effect additive

at the antenna terminals. Thus the input impedanze Z is the sum

7 =7+ Z (46)

where ZT is due to transverse field, and is given by equation (36),

while ZL, that due to the longitudinal field, must be determined.
The latter may be accomplished by application of equation (22) to

the self reaction, i.e.

3 v T
= - u7
7, fap A (47)

Y . I
with the elements-of @ATequal to the appropriate quantities of @L. In

the present formulation the only term in the source matrix, ¥po is JT’
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which is essentially a line current of unit amplitude (I_ = 1) between
the two spheres} Because of the symmetry which exists in the assumed

configuration the field of each sphere contributes identically to Z

LS
and therefore equation (47) may be expressed
L-R
Y. = 2 P =
L dr r * B (Ig 1) (u48)
R

where the field EL is that given by equation (41) with Ig = 1. Performing

the indicated integration gives

2 R'-R R(L-R")

2y, = fwe BR |RT(Ix_") T IR Ty )
(49)
Ay |ooR"  -a(L-R)
t 2 T; R~ T L-R

where A2 and XO' are given by equations (44) and (45) respectively.

Note that the first part of Z_ represents the electrostatic impedance of

L
the antenna in a cold plasma, and that it approaches the appropriate

form as Xo and Xo{ approach zero (i.e., free space conditions). The
second part of ZL is due to the electroacoustic fields; if indicates that
at frequencies at which o is essentially imaginary (w>wp) there is an
oscillating dependence of ZL on the dipole length L. This is because L
may be several electroacoustic wavelengths, and the resulting behavior

is not unlike that of an antenna in free space which is very long in terms
of the electromagnetic wavelength. It may also be observed that Z. re-

L

duces to twice the impedance of an isolated sphere if L is allowed to
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become infinite, and furthermore that if the sheath is collapsed (R' = R)
and the surface barrier potential made infinite (—oe/eo + ) then this
result is exactly that derived by Fejer [1964] for the perfectly reflecting
boundary condition. In addition, expression (48) becomes exactly twice

the impedance of an isolated sphere as calculated by Balmain [1966] for

an absorptive boundary condition if L = «, R' = R, oe/eo = 0 (i.,e., no

sheath barrier), and Balmain's absorption coefficient, a, is set equal to

as= E%I-/%? (50)

For a nominal value of y, say y = 2, this is approximately equal tc Balmain's
limiting value of a = VQ/n; Thus the present theory is sufficiently general
to include the results found by other workers for these limiting cases.

The impedance of the assumed antenna, the sum of Z_ and ZL’ may now

T
be expressed, in terms of electromagnetic, electrostatic, and electroacoustic

contributicns, as

2 .2

Z = 20 kO L™ Vltx (electromagnetic)
2 R'-R R(L-R') : .
+ 7 ; = (electrostatic)
Twe HmR \R'(1+y ') ~ LR'(1+x ) (51)
A, o~ OR! e—u(L—R)
+ 2 T;' U - R (electroacoustic)

Because of condition (34) it is obvious that the electromagnetic term is

relatively unimportant, as is the case for any small antenna.



5. The Direct Current Collected by a Probe

A resonant behavior of tﬁe direct current collected by a probe in
a warm plasma has been observed as the applied frequency is swept through
a range which includes the plasma frequency [cf. Takayama et al., 1960
or Miyazaki et al., 1960]. Fejer [19647] has pointed out that for a re-
flecting boundary condition (corresponding to an infinite potential bar-
rier in the present analysis) the electron condensation at the sheath
exhibits a similar resonant behavior at a frequency which is notably less
than the plasma frequency, and which depends upon the dimensions of the
probe as well as -upon the plasma parameters. With a finite potential
barrier supporting the sheath the effect of the electron condensation at
the sheath boundary is to influence the transport of electrons through
the sheath.

The current density through the sheath was treated linearly in the
previous discussion. A more accurate representation would be to expand
the current as a Tayof series in powers of the electron condensation,
and obtain the direct current as the time average. Thus by accounting
for the second order nonlinearity in equation (29) with adiabatic conditions,
the direct current to the probe is |

umR‘S e fk,T

I 2 - o0
DC m 27m (52)

1
’{l+—2'

(y-1)°
2

2

(6+6 7)1

s(R').2 [(y-1)(5+6) +
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where s(R') is the electron condensation at the barrier
s(R') = Kop(R') (53)

and 0 represents the barrier potential coefficient

ge
e k. T ' (54)
o B

0 = ~

By inspection of expression (52) it is evident that IDC will have a
resonant maximum only if the magnitude of s(R') does likewise. However
the previously derived expression for p, in equatién (41), does not in-
herently posess a resonant behavior. Rather the resonancé must be due to
the behavior of Ig, which is a function of applied frequency, unless the
r.f. source has infinite impedance. Thus for a constant voltage r.f.

generator the quantity s(R') to be used in expression (52) must be that

for I =V /Z, or
g g’

Koaoe Vg 1
1y = . 55
SV(R ) iweouﬂR'mZ . g 6 eR! l+xo\ (55)
: OR"+1+ —= r
iwe m Y
O (0]

where Vg is the generator voltage (peak) and Z is the impedance given by
equation (51). It is evident that, in this analysis, the linegrized
theory is valid only if Is] << 13 hence the extent to which equation (52)
can represent the dependence of IDC on either w or Vg is limited by the

linearization inherent in the formulation of expression (4).



6. Numerical Calculations

To further elucidate the results of the present analysis, it is
useful to resort to numerical caloulations. Rather than generalize, the
subsequent analysis is specifically related to typical ionospheric ex-
perimental conditions; this is done to demonstrate the utility of the
present hydrodynamic approach to problem solving, and not necessarily
the utility of the assumed antenna configuration as a probe. The fol-
lowing parameter values are chosen as repreSentative of possible ionospheric

experimental conditions:

electron concentration (SO/m) lollmeter—3
electron temperature (T) 300°K
specific heat ratio () 3

antenna length (L) .5 meter
sphere radius (R) .05 meter
sheath thickness (R'—R)' 2/kp

r.f. source voltage (Vg) \ .1 volt
barrier potentialvcoefficient (8) 3-5

In the subsequent analysis, the behavior of such an antenna, as given
by the present theory, will be illustrated, as will the effect of variation
of several of the experimental parameters.

For the aforementioned nominal parameters, Figure 2 shows the

behavior of the real and imaginary parts of the antenna admittance, Y, where
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and of the direct current collected by one sphere, , as functions of

I'DC
normalized freguency w/wp for two values of the barrier potential coef-
ficient, & = 3 and 5. This clearly shows the resonant natures of both Y
and IDC’ the latter having the general features noted by Takayama et al.
[1960] in laboratory experiments. It also indicates a broadening effect
upon the resonance with a decrease in the potential barrier coefficient.
These curves are in essence replotted in Figure 3, along with those which
indicate the antenna behavior for a relatively large collision frequency,
v o= 106 (i.e. v/wp'g .05). It is evident that the collisional effect

on Y and IDC is more pronounced for a larger value of €. TFor v = 10,
however, the deviations from the v = 0 curves are s0 small as to be un-
discernable on the graphs.

The effect of collisions is most pronounced in the behavior of im-
pedance near w/wp = 1., Figure 4 shows the resocnance-like effect which
occurs near the plasma frequency for several values of collision frequency.
The dependence of the slope of the lower part of this resonance on col-
lision frequency suggests a possible scheme for its determination; and
the occurrence of this resonance almost at the plasma frequency suggests
a means for the determination of the latter. However, the possibility of
a "stray" shunt capacitance unaccounted for in the analysis is sufficient
to make such detefminations futile. This futility is illustrated in Figure

: n
5, in which the real part of Z is shown for v = 10 for several values of

"stray" shunt capacitance ranging from O to 5 pf. The apparent effects of
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such a perturbation is to shift the resonance away from the plasma
frequency, and to broaden the resonance as well.
The sheath thickness, chosen arbitrarily as 2/kp, has some effect

on the behavior of Y and of ID This is shown in Figure 6, in which

o
it is apparent that the admittance resonant frequency increases with in-
creasing sheath thickness. An increase in the resonant frequency also
results from a decrease in the sphere radius, as was noted by Fejer
[1964] and is illustrated in Figure 7.

In the discussion following egquation (49) it was noted thaf for

m/wp > 1 an oscillating dependence of Z. on frequency is predicted. This

L
is due to the mutual coupling of the two spheres via electroacoustic

waves, which may have wavelengths significantly less than the distance
separating the spheres for w/wp > 1. The effect is most noticeable

in the behavior of the real part of admittance, as is illustrated in Figure
8. That this ripple is related to the separation of the spheres may be
ascertained from the difference in its period for the lengths L = .2 and .5
meter. An additional property of L is its effect on the frequency of the
resonance of Y and IDC’ in that decreasing L tends to increase the reson-
ant frequency.

The foregoing analysis is not entirely applicable to the interpre-
tation of ionospheric experiments, because the latter are conducted in an
anisotropic medium, It does indicate, however, the predicted nature of
some of the dimensionally dependent features of the behavior of an antenna

in an isotropic warm plasma, which may reasonably be expected to have

counterparts in an anisotropic plasma.



7. Conclusions

The approximate sheath b§undary condition, represented by a
static electric double layer, has been shown to be capable of representing
the static behavior of the sheath about a probe in a warm plasma. With
application of the hydrodynamic theory to waves in a warm plasma the
boundary condition has been shown to lead to results which are not unlike
experimental observations of antenna admittance and direct current collection.
Comparison of the present analysis applied to an isolated spherical radiator
shows that it leads to the results of other workers for the limiting
.boundary conditions of perfect reflection and complete absorption.
In addition the present analysis includes a useful probe configuration,
for possible ionospheric application, which offers the hope of better
agreement between theory and experiment because of the clear division
of transverse and longitudinal source terms not obtained with an ordinary
dipole.

The significance of the present approach to the sheath problem does
not lie in its application to the impedance of a sphere in an isotropic
warm plasma. Rather the purpose of this paper has been to_demonstrate
that with an appropriate boundary condition the hydrodynamic theory is
capable of giving results which are reasonable and which do not disagree
with experimental evidence. A ramification of these results is that the
hydrodynamic theory can be applied, with reasonable confidence, to more
complicated situafions, such as the behavior of an antenna in an anisotropic

warm plasma.
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Figure Captions

Figure 1. Configuration of the assumed antenna.

Figure 2. Admittance and direct current for © = 3 and 5 with v = 0.

Figure 3. Effect of collisions on admittance and direct current for @ = 3
and 5.

Figure 4. Effect of collisions on impedance near the plasma frequency.

Figure 5. Effect of stray shunt capacitance on impedance near the plasma
frequency.

Figure 6. Effect of the assumed sheath thickness on admittance and
direct current.

Figure 7. Effect of sphere radius on admittance and direct current.

Figure 8. Effect of antenna length on admittance and direct current.
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